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BALLISTIC RESEARCH LABORATORIES 

REPORT NO. 995 

CHMurphy/jcw 
Aberdeen Proving Ground, Md. 
October 1956 

PREDICTION OF THE MOTION OF MISSILES 
ACTED ON BY NON-LINEAR FORCES AND MOMENTS 

ABSTRACT 

The application of the usual techniques of non-linear mechanics 

to fourth order non-linear systems is severely handicapped by 

algebraic complexities. It is shown that for an important subset 

of the set of fourth order systems, the use of the complex variable 

allows the quick derivation of the required results. This technique 

is applied in some detail. to the prediction of missile yawing motion. 

In this discussion the useful concept of an amplitude plane is in

troduced. Comparison of the theory with the results of exact computa

tions indicate the value of the equivalent ~eRDiz~ ~~ach. 

The effects of gravity-induced yaw of repose and of small aero

dynamic asymmetries on the general non-linear problem a~e· discussed 

in an appendix. 



A,B,C,D 

a,b,c,d 

A 

al, a2 

bl' b2 

ci 

* TABLE OF SYMBOLS 

complex constants in Eq. (2) 

real constants in Eq. (58) 

real coefficients in Eq. (16) 

real coefficients in Eq. (16) 

real coefficients in Eqs, (1) 

(b -
2 D = c) + 4 ad 

d 

G = f' 

H = pd3 

~d 
2 

u 

n 

diameter 

[P!
3 (~- k2-2 KH) - Jg + fv] "f , 

trajectory component of the gravitational acceleration 

components of the gravitational acceleration perpendicular to 

the missile~s axis 

L i = H, L, M, MA, T 
k = 0 

Only those symbols which appear in the body of this report are listed 
here. Symbols which are introduced in the appendices appear close to 
their definitions. 
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- Cl p 
Ki = KiO e i ; i = 1, 2 amplitude of i - th frequency 

I1f 
KL 

1\ 

IW. 
~ 
Ki (p) 

~1 

~ 

" 
pd3 

M =-m 

m 

m = ~~ 1 

II)_·~ 

P(x,y) 

p 

p 

Q(x,y) 

pd3 
T =

m 

u 

x,y 

moment coefficient due to cross angular velocity 

lift force coefficient due to yaw 

moment coefficient due to yaw (static moment coefficient) 

moment coefficient due to crass acceleration 

Magnus moment coefficient 

parametric function for damping correction to first 

approximation 

axial radius of gyration in calibers 

transverse radius of gyration in calibers 

cosine of yaw angle 

mass 

complex constants in Eq. (3) 

function in Eq. (58) 

independent variable 

arclength along the trajectory in calibers 

function in Eq. (58) 

magnitude of velocity 

real dependent variables in Eqs. (1) 
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exponential damping coefficient o~· i~th frequency 

(g2 + ig3)d 
- J ),. ., = 

u g 

5 = vu (sine of yaw angle) 

~2k1 el 

2n 

02k ~ + K2 cos ~ d¢ 
1 ( = 2n Kl 

2n 

~2k]e2 1 ~ 52k [1 + 
Kl 

cos ¢] d¢ = 2n 
~ 

arg IIJ. 

1.: complex dependent variable in Eq. (3 )_ior complex yaw 

k 2 jJ)l d 
1 1 (gyroscopic spin) 

~ 
-u 

2 

~ complex dependent variable in Eq. (2) 

p air density 

(f arg c 

¢i = ¢:f.0 + ¢1 P phase angle of i-th frequency _ 

t(p) parametric function fer frequency correction of first 
approximation 

• ,, 

argD 

axial spin 

tilde superscript denotes quantities appearing in the 
epicyclic first approximation of .the non-linear equation 
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1. INTRODUCTION 

One of the most challenging current problems in exterior ballistics 

is the prediction of missile motion for missiles flying at large yaw 

* 1 2 angles. Highberg and Zaroodny have treated the special case of 

circular yawing motion while the case of almost circular motion has been 

rather elegantly analysed by Davis, Follin, and Blitzer.3 The problem 

of more general motion for cubic static and Magnus moments has been 

attacked by Lietmann4 but this treatment is obscured by lengthy algebraic 

manipulations and does not give its results in a convenient form for the 
' exterior ballistician. 

There are two difficulties in extending the usual methods of non

linear mechanics to the problem of missile yawing motion. The first 

difficulty is primarily algebraic and the second conceptual. Since the 

yawing motion has two degrees of freedom, the problem requires the 

solution of a fourth order system of equations and, hence, the appli

cation of the Kryloff-Bogoliaboff5 techniques can require rather compli

cated algebraic operations. Secondly, vibrations of this fourth order 

system can take on two frequencies so that the averaging step of the 

K - B method would require an averaging of two different frequencies. 

Although this is mathematically possible, the precise meaning of such 

an average is vague. 

In this report it will be shown that for an important subset of 

the set of fourth order differential systems, the fourth order equation 

in a real dependent variable can be replaced by a second order analytic 

equation in a complex variable. This us~· of the complex variable 

introduces important simplifications into the non-linear problem. In 

Reference 6 it is shown that with the proper selection of geometrical 

* The angle between the missile's axis and the tangent to its trajectory 
is called the yaw angle. The yawing motion is usually described by 
two variables. Two common choices are the Eulerian angles lo~ting 
the missile axis in wind-fixed coordinates and the direction cosi~es 
of the velocity vector with respect to missile-fixed coordinates. 
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variables,the system of differential equations describing the yawing 
motion can be a member of this subset. In this report it will be shown 
that for a large class of non-linearities the averaging step of the 
K-B method need only be done for a single frequency and that most im-

. Po:rtart:t aerodynamic non-lineari ties lie in this class. 

By means of an "amplitude plane" the results of the analysis are 
presented in a simple and revealing form. It is shown that the whole 
character of the motion can be described when the location and nature of 
a small number of singularities are determined. The effect of a cubic 
Magnus moment is discussed in some detail. Finally,predictions for 
limit motion of two different cases of quintic Magnus moments are 
compared with exact numerical integrations made at the Naval Proving 
Ground,7 

Although only the homogeneous part of the complex yaw equation 
is treated in the report proper, the effect of gravity-induced "yaw of 
repose" and the effect of small asymmetries is considered in an appendix. 
The direct substitut~on method of Reference 6 is used and the results 

8 are compared with additional Naval Proving Ground calculations. 

2. EPICYCLIC SUBSET 

The most general linear homogeneous fourth order system of 
differential equations with constant coefficients may be written in 
the form 

(la) 

(lb) 

where ci are constants and primes indicate. derivatives with respect to 
the independent variable, p. If Eq. (lb) is multiplied by i and added to 
Eq. (la) and the complex variable E = x + iy is introduced, the following 
complex equation may be written 

where the 

When 

E" + A E I + B E + c 1' + D 1 = 0 (2) 

complex coefficients, A, B, C, D, are linear combinations of the 
C and D vanish, Eq. (2) becomes an analytic differential equation 
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in the complex varia~le, £, and can be easily solved. Because of this 

simplicity it is of some interest to determine the conditions under 

which it is possible to transform Eq. (2) to this special form by means 

of a reversible linear transformation. For a reason which we ~11 give 

later in this section this subset of the set of all differential systems 

of the fourth order with constant coefficients will be called the 

epicyclic subset. 

The most general linear transformation can be written in the form 

\ =I!J.f +~1" (3) 

where llJ. and ~ are complex constants. The inverse equation can be 

"obtained by eliminating1 between Eq. (3) and tbe,jag;njugat:e .. o:f: P)q~ (3). 

iii1 \-~I 
£ = (4) 

Thus the restriction to reversible transformations is equivalent to the 

relation 

Without loss of generality we can assume that llJ. is non-zero*, and, hence, 

relations (3) and (5) become 

where 

i9 
\ = me ( £ + sf) 

m
2 

(1 - s~) f. 0 

Ae me 

~ 
s = -, and 

ml 

m is real. 

H~ iS-
£ ~ e- \ - se . \ 

m(l - ss) 

(6a) 

: (6b) 

(7) 

If llJ. were zero, we would consider the conjugates of Eq. (2) and (3). 
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Substituting Eq. {7) in Eq. {2), 
- I 

>.." + {A - C s )>.. + {13 - D 8)>.. 

2i6 
- e ~ ">:"+ {As - c)>:• + {Bs - n)IJ = o 

If ">:" is eliminated between Eq. ( 8) and its conjugate, 

(1 - ss)>.." + (A- Cs + cs - A ss)>..' 

(8) 

+ (B - Ds + Ds - B ss)>.. - e
2

i
6 {~ s

2 + (A - A)s - ~ >::• (9) 

+ [o s
2 

+ (B - B)s - n] x} = o 
where (1 - ss) is non zero by equation {6b). 

The requirement. that Eq. (2) belong to the epicyclic subset means 
that it must be possible to select s so that the coefficients of X• and X 
vanish. From Eq. (9) it can be seen that m and 6 cannot make the coef
ficients of X• and X vanish and so they may be arbitrarily selected. If 
we make the definitions A = A1 + iA2 , B = B1 + iB2 , C = 1Cie1a, and 

D = I D I etru, then we have the following pair of quadratic equations for s. 

{10) 

(11) 

If neit;ber C norD vanish, the solutions of Eqs. (10 - 11) are: 

r ~ II~ 12 I i(a - ~) 
s .. ~cr .:!: c - Jj e 2 {12) 

s ='B2 ~B212 -~ ei(m- ;) (13) 
UDI - D ~ 

Since sis unity ~hen either~~2 ~oriB~~ is less than or equal to one 

and this is contrary to relation {6b), we have the restrictions: 

10 
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Under restrict:lu!m (14),sccan:sattst'y both Eq. (12) and Eq. (13) only if 

a=mor 
~ 

ICT = 
This can be given 

in the single equation 

By means of Eqs. ( 10 - 15) we can nov state the following theorem: 

Theorem ,Eq. (2) is a member of the epicyclic subset if one 

of the following conditions is satisfied: 

(1) C = D = 0 

(2) c = o, ~ = 0, I ~2 1 71 

(3) D cO, B2 = o, 1;1 "?1 

(4) ~ 
B2 I; I ? 1. c =n, 

For the trivial case (1), s is zero; for the other cases it is fixed 

by either Eq. (12) or Eq. (13). 

(15) 

By means of such a linear transformation all equations belonging 

to the epicyclic subset may be vritten in the form 

(16) 

where a
1

, a
2

, b
1

, and b
2 

are constants. Substituting A= e(+ a+ i¢')p 

in Eq. (16) and separating real and imaginary parts, we see that ¢• and 

a must satisfy the following equations: 

¢'2 + a2 ¢' : :pl ~ )l~a),. : gJ = g 
.1. .\. 

(18) 
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Under the usual assumption of small damping during a cycle, the a term 
in Eq. (17) can be neglected and it reduces to 

¢• 
j j ; 1,2. {19) 

If the above inequality is not satisfied or the damping is not small over 
a cycle, Eqs. (17 - 18) lead to the need for the solution of a fourth order 
equation. This difficulty can be avoided by not separating Eq. (i6) into 
real and imaginary parts after making the substitution. 

All the cases treated by the methods of this report will be restricted 
to those with small damping over a cycle and Eq, (19) will apply. 

Since a
2 =- (¢

1 • + ¢2 •), symmetric forms of the equation for the 

damping exponents can be obtained from Eq. (18). 

al ¢1 1 + b2 
a = -=--=~-::. 

1 ¢•-¢• 1 2 
(20) 

(21) 

The equation for the general solution to Eq. (16), therefore, is 

(22) 

-a P 
where Kj = KjO e j ; ¢j' and aj are given by Eqs. (19 - 21); and ¢j0 

and KjO are constants. This solution is a linear combination of two 

complex vectors which are rotating at certain fixed frequencies and are 
exponentiall:y <l.a.mped. Since the curve swept out in the complex plane is 

12 



called an epicycle, the reason for the name of this subset is now clear. 

The solution for s when Eq. (2) belongs to the epJcyclic subset can 

be obtained by use of Eq. ( 4 ~ s is detennined to be a solution of Eqs. ( 10 -

11), m and e are arbitrary and for convenience m will be made unity and e 
will be fixed at zero. 

).. - s).. 

l - ss 

where pj = Pjo + pjtp. 

-il\ 
e + s ~ e 

-i" ~"2 

3. SOLUTION OF THE NON-LINEAR EPICYCLIC EQUATION 

(23) 

Although the treatment of non-linear fourth order systems is usually 

quite laborious, the procedure for systems which may be linearized to 

members of the epicyclic subset is much simpler. In this section the 

approximate solution to equations of the fonn of Eq. (16) but with 

coefficients a
1

, a2 , b
1

, b2 , which are functions of 1.., ~' 1.. 1 , and~·, 

will be considered. The method of solution which will be employed will 

be essentially that of Kryloff and Bog~li~b~ff,5 

This method is based on a pertubation of the solution of the 
~ 

linear equation with no damping. If this solution is identified by 1.. 

:then 

where 

... 
).. 

"' pj 

"" ¢ 
J 

N2 
1'2 

i:0'l 
,._, 

i¢2 
=KlO e + ~0 e 

"' ''" = Pjo + p.p 
J 

"' t2 ..., 
-a2 ~ •a2 + 4 bl 

= 

..., 
+ 4bl 

2 

70 

constant parts of a2 and b1 (their values when 

1.. 1 = 1.. = 0. ); and 

"" KjO' pjO are constants. 

13 
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The complete non-linear differential equation can be written in the form: 

"" "-' 

- [al + i(a2 - ';;;:'2~ Ebl- bl) + ib~ A 
A" + ia2 A' + b1 A = A' -

= f(A, I, A1
' I• ). (25) 

where a1 , a2 , b
1 , b2 are functions of A, A, A' ' 

I•. 

The pertubation process is quite similar to the well-known method 
of variation of parameters.. First the solution is assumed to be that 
expressed by Eq. (24) with the constants KjO' ~lO replaced by unknown 
functions of p, K.(p) and ~j(p). 

J "' y 
. i(~l + ~1) i(~2 + 102) 

•• A = K1 e + ~ e (26) 

This 

(27) 

The last two expressions in Eq. (27) are set equal to zero so that 

i(~ + ~ ) 
(K 1 + i~ 1K )e 1 1 

+ (K-' 1 1 1 -"2 (28) 

and Eq. (27) then simplifies to 

(29} 

Differentiating again we see that 
"' ~ 2 i(~l + ~1) "" 2 

A" = - ~ 1 K e - ~ 1 K 1 1 2 • 2 

(30) 

If Eqs. (26, 29, 30) are substituted in Eq. (25),the terms without 
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derivatives of the parameters must satisfy the homogeneous equation and 

therefore cancel. 

(K2
1 + i~2 •K2 ) can be eliminated between Eqs. (28) and (31). 

(31) 

. . + i~ I 
,1 

(32) 

- - (~,. - 1,·> -'{ ~ •• (., - ~1 r~,. 

~ ~,: >(b,- •,~ E. :i .·•J} 
where ~ = ~2 + ~2 - ~l - \jll. 

This simple derivation of Eq. (32) shows the considerable reduction in 

algebraic complication which the use of the complex variab~e and the 

restriction to the epicyclic subset have introduced. 

At this point in the K-B method, due to the difficulty in solving 

the differential equations for the parametric functions, averages of the 

right sides of the parametric equations are taken. In general, the 

right hand side of Eq, (32) has two basic frequencies and the necessary 

averages have a rather vague physical meaning. If only the difference 

frequency ·:~) is allowed in the functional dependence of a1 , a2 , b1 , and 

b2 on :1., '5:, :1.1 , and '5:•, a single average would be needed and this average 

would have a simple meaning. This means that only those non-linearities 

which can be associated with a body of revolution are considered.15 For 

example, under this restriction there are four possible quadratic com

binations of :1., '5:, :1. 1 and '5:• :* 

* The effect of damping has been neglected in the calculation of :1. 1 and '5: 1 
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' ,,, - ¢ ,2__ 2 ¢ ,2 2 2 ¢ •¢ I K K " " - 1 Kl + 2 K2 + 1 2 1 2 cos !¢_· 
' ' 

t..I•·- i~l,Kl2 + ¢2'JS2 + KlK2(¢1• ei¢ + ¢2' e-i1 

VI= i ~l'Kl2 + ¢2'JS2 + KlK2(¢1' e-i¢ + ¢2' ei¢~ 

(33) 

(34) 

(35) 

(36) 

From Eq. {33- 34) we see that both the ma.gnitude.of.l.. and the magnitude of 
its dcri vativc have the frequenqy ;of ,¢. and,. hence, the aver~ging_ v:Lll be 
made over a period of these ~mplitudes. 

It is now necessary to assume that the modal amplitudes, Kj,change 
slowly over a period of the difference frequency. With this assumption 
in mind we can average the right side of Eq. {32) over a period of ¢and 
separate the result into real and imaginary parts, 

1jr ' l 

16 
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From symmetry, the equations for the second mode of oscillation are 

K I 
-1 

( { "1 ~,. " ~,. ~ 00
' ~ " b2 ~ <~ 00

' ~ 2 

~ 
= 

211(~2 ·-~1·) 

- [-., - ',>~ - '"' -<] =~ ,,, j "' = -~ (Kl,K2) (39) 

-1 '•{ ~ ~ ~ ,, ~ 1j/ I = J( (a2 - ~g) ~2 1 + ll ~ COB 2 2!1 (~2 I - wl I) 

0 (40) 

~ "~ ... ·] "[-,~,· .. J ~ ,,, ·}"' 
Thus for each cycle of ~~ the K-B approximation is a damped epicycle with 

damping expone~ts, aj, given by Eqs, (37) and (39) and with frequencies, 

~j 1 ' equal to ~j 1 + 1jrj 1 where the 1ifj' 's are given by Eqs. (38) and (40). 

The damping exponents predicted by Eqs. (37) and (39) for the linear case 

are precisely those given by Eqs. (20 - 21). 

"' "' If a2 and b1 had been chosen to be the average values of a2 and b1 
instead of their values for zero amplitude motion,the expressions for 1jrj 1 

would have been simplified. The implications of such a choice are 

described in Appendix C. In most cases, however, the advantages of this 

choice do not outweigh the algebraic complexities which are introduced. 
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. 4, APPLICATION TO MISSILE YAWING MOTION 

With the aid of the ~dfn~ two sections on the approximate 
solution of non-linear equations of the epicyclic type, the problem of 
honl•lilieaa"' yawing motion of a symmetric missile in free flight can be 
easily hami'Le1i. For this case the complex plane is the plane:.perpen
dicular to the missile's axis. The complex vector, A, lies on the 
intersection of this plane with the plane of the yaw angle with magni
tude equal to the sine of that angle. In Reference 6 it is shown that 
the general equation of yawing motion in a non-rotating coordinate 
system is 

where 

n 1.: .£ I -J A + LH + Jg - T - iv All 

pd3 
H=-m 

.t =Vl- 't} 

5 = 1/f 
k 2 

~L- ~ + k2-2(KH- ~~ 
(cosine of yaw angle) 

(magnitude of sine of yaw angle) 

- 1 w1d 
11 = :-2 

lt2 u 

pd3 ~2-2 ~J M=-m 

T 
pd3 

.t tL- kl-2 ~ =-m 

JL~ 
pd3 

=-m 
t~(52) 

df>2 (e2y] 

18 
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u 
- J A g 

k
1 

axial radius of gyration in calibers 

k
2 

transverse radius of gyration in calibers 

p density of air 

d diameter 

m mass 

IDl axial spin 

u magnitude of velocity 

&r trajectory component of the gravitational acceleration 

g2 , g3 components of gravitational acceleration perpendicular to 

missile's axis and the Ki's are aerodynamic coefficients which are 

defined in the Table of Symbols. Since only the homogeneous equation 

has been considered in Sections 2 and 3, the discussion of the inhomo

geneous part of Eq. (41) will be deferred to Appendix A. 

The most common non-linear forms of Eq. (41) arise from a 

dependence of the aerodynamic coefficients 2 on B . Since any function 

Fourier aeries 2 
of B is an even periodic function of ~l - ~2 , its 

expansion is a cosine series and, hence, most of the sine terms in 

Eqa. (37 - 40) vanish.* Eqs. (37 - 40) can be written as 

* 

1jr I 
1 

\jr I = 
2 

-1 

Since £ 1 and JL' are the derivatives of even functions, they are odd 

functions and so have sine expansions. Fbr· these; 4_uant.i ti<fs c.oz-.:Lylcthe 
sine,,;il;erms, h!We, non-zero contributions.~ . _, · ' 
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Kl 
l 

Kl 

,, ~ 
= -1 [ E(82)+JJ D\~~~ 

2:rr(~ ~-~I) 
l 2 0 

- f,J I 
L 

+ f,J I 
L 

K2 ,,, ; } 
Kl 

d~ = -al (Kl,~) 

* and 

K 
cos ~ - v T(8

2
) ~ .. 2 

Kl 

Since 2:rr 2:rr 

l f £1 l J (l - 82) I 
sin~ d~ 2:rr T sin ~ d~ = 2:rr 

2(1 - 82) 
0 0 

2:rr 

l t sii~ "' "' 2 = 2:rr KlK2 ( ~ll - ~2 I )( l + 8 ) d~ 

(~1 1 -~2 1 ) KlK2 (l 
2 + ~2) + Kl 

,. and = 2 

~ ~J + iC cos 
l 

(44) 

(45) 

*The inequality v2 - 4M~ 0 is equivalent to the requirement that the missile 
be gyroscopically stable.9 Far positive spin, ~1 • is the larger frequency 
and is usually called the nutational frequency while ~2 1 , the smaller 
frequency, is called the precessional frequency. On page 19 of Ref. 9, 
it is shown that this use of the terms "precession" and !\nutation" is not 
compat.ible with their use in the theory of the top. 
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,y 

¢.1 =¢.1 +\jr I 
J J j 

then 

(48) 

+ 1 

2rr(~ - ~2) 
¢2 ~ ~ - ~i ~ (1+~+~) 

. 2 
r. 2 J Kl 
LM(o )-M(OJ (1 + IS"cos¢)d¢ 

* Although Eqs. (47 - 48) for the equivalent linear frequencies are of 

some interest, the primary concern of a designer is the behavior of the 

amplitude of the motion. For the type of non-linearities which are usually 

encountered, .it will be convenient t<!l· deaoi!::l:l!le _ tMu!l molbi<:lnJii'l .. terms of ... · 

the squared amplitudes of each mode. In the more detailed analysis that 

follows we will make the convenient but not necessary assumptions of 

** linear damping moment and linear lift force (H = constant, J
1

1 = 0). 

Eqs. (44 -45) then reduce to 

* 

** 

(K 2) I 
2 2 1 

• - 2a1 (K1 , ~ ) ( 49) 
K 2 

1 

(K2 2)' 2 2 
(50) 

K 2 
= -2a2 (K1 , ~ ) 

2 
2rr 

[1 
K2 

¢] d¢ 

.., 
1 

so v T( o2 ) (H + Jg)¢11 - 2rr + K cos ~. 

1 
al = (51) 

"" v 
¢ I _ ¢ I 
1 2 

;l' 

~ Kl 
¢] 

"' 1 L~ 'V T(o
2

) (H+Jg)¢21 - 2rr + K cos d¢ 
2 (52) a2 

~ 'V 

¢ "' 2 - ¢11 

These frequencies are measured in the non-rotating coordinate system. 
The relations between the non-rotating coordinate system and the fixed 
plane coordinates are given in Reference 6. 

In Appendix D the interesting special case of a non-linear damping 
moment and zero spin is considered. 
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where 

5. THE AMPLITUDE PLANE 

In Reference 6 the analysis of non-linear spark range data was 
developed in some detail. The yawing motion over the relatively short 
flat trajectory under observation was assumed to be epicyclic with 
constant frequencies and damping exponents which were related to the 
appropriate effective magnitudes of yaw. For the cubic Mgjjnus and 
static moments, which were assumed, Eqs. ( 47 - 48) and (51 - 52) 
reduced to* 

(Kl2 + 2L 2) 011 = 0110 + 0112 -"2 

= 

H ~i - v ~0 + T2(Kl2 + 2~2ll 
~1 r - ~2 r 

,._, • 'V 

¢i_n<r 
2 ~"1 

*The ,·_uactic terms in Eqs. ( 47 - 48) are ami tted for 1i <::;: sin 15°. 
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where 

M = 

n 

T 2:£ 
k=O 

3 
Jt = ~d ~. 

UBing Eqs. (53 - 56) a large number of spark range firings were analysed 

with outstanding success. The swerving motion was treated in a similar 

fashion and cubic lift force and cubic Magnus force coefficients were 

obtained which showed excellent consistency with their corresponding 

moment coefficients. 

Although this work on spark range firings was so successful, it 

suffered from its limitations to cubic non-linearities and short portions 

of trajectories. In Reference 6, the influence of polynomia.lJ_expansion 

of MandT was calculated up to 14th degree polynomials* and Eqs. {47 -
2 

48, 51 - 52) will apply when M and T are arbitrary functions** of o 
Thus the basic limitation is the restriction to short trajectories. 

* 

** 

The effective yaws of that report 
this report by the definitions 

1 
= 2rC 

2rC 

so 

are related to the integrals of 

d~)and 

In Appendix B effective values of negative powers of o are computed 
and_a possible UBe indicated. 
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This restriction lies in the assumption that the yawing motion is 
epicyclic with constant frequencies and constant damping exponents. 
(These constants depend on the effective amplitude of the motion}) 
A study of Eqs. (49 - 50) shows how this restriction can be relaxed. 
The theory requires that these quantittes be constant over a period of 

2 o but they may vary over longer intervals. Dividing Eq. (50) by Eq. 
(49), we can write a single first order non-linear equation for this 
variation 

= (57) 

Equation 57 describes· the character of the yawing motion by means 
of the movement of a point in the K1

2, ~2 plane which we will call the 
amplitude plane. For any point in this plane the equivalent linear 
frequencies and damptng exponents can be calculated and thus,except for 
the phase angles, ¢jO' the motion is completely determined. As will be 
seen, this amplitude plane will have a number of similarities with the 
phase plane associated with the one degree of freedom problem. Although 
the usual four dimensional phase space associated with two 1degrees of 
freedom: reduce£ to three essential dimensions for the epicyclic subset, 
it will not in general reduce to two Aimensions and, hence, the amplitude 
plane is definitely not a phase plane. 

Differential equations of the form of Eq. (57) have been treated in 
10 some detail by Poincare who showed that the essential properties of 

the solution curves are fixed by the location and type of ibll:r singularities. 
Singularities are points for which both the numerator and the denomtnator 
of the right side of Eq. (57) vanish. They can vanish in four different 
way£ •. These ways correspond to the following p9tntst 

and a 2 = 0. 

(1) 
(2) 
. ' 
bl 

the origin; 

the K1 
2 intercepts 

the K2
2 intercepts 

of the a1 = 0 curve; 

of the a2 =.0 curve; and 

(4) the intersections of the zero damping curves a1 = 0 
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Accordfing to Poincare's classification there are four possible types 

of first order singularities; nodes, saddles, spirals, and centers. In 

Fig. l,a node and a saddle are shown, while a spiral appears in Fig. 3b 

and a center in Fig. 4. The particular eurve along which the actual 

yawing motion moves is determined by the initial modal amplitudes as 

specified by the initial conditions. If the coordinates are translated 

so that the singularity is at the origin, Eq. (57) has the form: 

dy ax +by + P(x, y) 
dx ~ "'"c"'x--,-+-dy'<"'--:+__,Q,.,( x::c,'--"y=*) (58) 

* where ad - be f 0 and P and Q vanish to at least the second order at 

the origin. The cri teriS.:~or the type of the singularity can now be 

stated in terms of the coefficients a, b, c, d and their discrim~amt 
2 

D ~ (b- c) + 4 ad. (See page 44 of Ref. ll,) 

I. The singularity is a node if (l) D 7 0 and ad - be ~ 0 or 

(2) D ~ 1). (Note that if ad ~ o, it is a node if ~"P ;•.Cili· ). -

II. The singularity is a saddle if D 7 0 and ad - be 7 0. 

III. The singularity is a spiral if D ~ 0 and b + c t 0. 

IV. The singularity may be a center if D l.. 0 and b + c ~ 0; 

otherwise it is a spiral. The higher order terms P and Q must be 
l4 

considered for a final determination. 

For Eq. (57), the character of the singularity at the origin can be 

I!!M:I!ly detel'JilllXIed. Sll!!ce a and d both vanish and b and c are the linear 

values of the damping exponents a20, alO' The origin is a node when 

these damping exponents are of the same sign (~0a20 7 0) and a saddle 

when they are of opposite sign (al0a 20 ~ 0). In Fig. l~the first 

possibility is shown for lalol ~. ja20 1 and in Fig. lb, the second for 

ialoiL. la20 1 is shown. The direction of motion is not shown since this 

depends on the actual sign of the damping. If, for example, both exponents . 
are positive, the origin is a stable node and small amplitude motion must 

damp to zero. 

* If ad - be ~ 0 and the origin is a singularity, then the singularity is 
at least second order and the P and Q functions must be considered. 
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2 2 The singularities on the K1 or K2 axes can be located by consideration 
of pure mode motion. They are, however, very important for "almost" pure 

2 modes as well. For pure nutational motion, i.e., (K2 = 0), Eq. (51) reduces 
to 

(59) 

Similarly for pure precessional motion, 

(60) 

Eqs. (59 - 60) could have been obtained by taking the expressions for 
linear damping and replacing the constant Magnus moment coefficient by 

2 its actual non-linear dependence on 5 This is the process used in 
Refs. 1 and 2 in their treatment of pure mode motions. 

In order to consider motion near a pure mode of amplitude K, 
T(52 ) must be expanded in Taylor series about this amplitude. 

(61) 

where the point (K1
2, K22 ) is near either (~, 0) or (0, ~). If 

iiifngulari ties on the nutational axis (K2 2 
= 0) are considered, their location 

ma~nbeonllileJ;ried bycsectltdri'gJEq_"lt(~~j :@qua4.J~~ "Be~o;r:d~q.caua'1 a 
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singular point by the coordinates (~, 0), Eq. (59~ becomes 

(H+J.8 )~1~ - ii T(~ b
1 

= O 

Wi· - ~2 I --

(64) 

If Eq. (64) is substituted in Eqs. (62 - 63), 

(65) 

a2 (IS:2, K.}) = ~-+Jg + ~J +A c~ 2 + 2(Kl2 - ~~ (66) 

where A v 'N(~) 
- ~l· - ~· 

Substituting Eqs. (65 - 66) in Eq. (57) and shifting 

2 2 2 
the origin to the singular point by the translation x = K1 - ~, y = ~ , 
we see that 

and 

dy ;; y ~H+Jg + ~) + A(y + 2xD 
dx -=('-x-+__,c")-~---A-(_x_+_2y-U=-=._ 

a = 0 

b = H+J + ~ 
g 

2 c ,..AK 

d =- 2~, 

(671). 

(68) 

(69) 

According to relation (69) the singularity must be ei~her a node or a 

saddle. It will be a node if A(H+J + ~) is negative and a saddle 
g 

otherwise, Conversely, if the singularity is on the precessional axi·s, 

it can be located by setting Eq. (60) equal to zero. Since Eqs. (59 -60) 

are symmetric in the subscripts land 2, the test for type of singularity 

can be obtained by interchanging subscripts in the above discussion. 

Therefore, the precessional singularity will be a node if -A (H+J -1- ~) 
g 

is negative and a saddle otherwise. 
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The situation for singularities which are not on the coordinate axes 
is much more complex. In order to treat these singularities it is neces
sary to know much more than the value of T and T' at a point. To illus
trate the proper procedure for handling these singularities the possible 
amplitude planes for a cubic Magqua moment will be discussed in some detail. 

According to Eqs. (55 - 56) the curves of zero damping are linei! des
cribed by the following equations: 

(10) 

(71) 

where a10 

The intersection of the lines is a singularity and it has coordinates 

(alO + 2a20 a2o + 2a10) \c 3a , -3a . In addition to this there are singularities 
12 12 

at the origin and the points f.. alO , 0 l , 
\ al2 / 

These three 

singularities c~,_however, be treated by methods already developed. 

Since only the first quadrant of thelS..pil.!l:tuae 'Plane hSs'<P~&ioaD.niiles.ning, 
the intersection of the zero damping lines has importance only when it 
lies in the first quadrant. 

a10 + 2a20 
3 al2.-_ >O, (72) 
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If these are multiplied together and divided by - 1 then 

(73) 

(74) 

Comparing inequality (74) with the original inequaliti~s (72), we see that 
10 

the intersection will be in the first quadrant when lies between 
0:20 

1 - 2 and - 2 and o:20 has the same sign as o:12 • 

In order to classify this singularity Eqs. (55 - 56) are now placed 

in Elq. (57) and the .origin is translated to the point of intersection by 

2 0:10 + 2 ~0 2 0:20 + 2 0:10 
the translation x = K1 - 3 0:

12 
'· y = ~ + 3 0:

12 

dy (o:20 + 2 o:lO)(y + 2x) - 3 0:12 (y + 2x)y 
di= 

(o:10 + 2 o:20)(x + 2y) + 3 o:12 (x + 2y)x 

The coefficients of Eq. (58) can now be obtained from Eq. (75)· 

c = 0:10 + 2 ~0 

b + c = 3(0:10 + ~0) 
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If the point of intersection lies in the first quadrant, be - ad must be 
always positive. Applying the criteria for singularities to relations 
(72, 75 - 77), we can make the following statements for the singularity 
at the point of intersection. 

(1) It is a node if - 2 

(2) It is a spiral if -

(3) It may be a 

0110 L.. 
1.812 

0110 <.-;- or - .552-;-- L- • 5. 0120 0120 

1.812 
0110 <.-
0120 

<-
0110 

.552 and- t-
0120 

1. 

- 1. (An application of the criteria 
of Ref. 14 shows that it is a center.) 

In Figures 1 - 4*, all but one of the possible different amplitude 
planes for a cubic Maggus moment have been drawn by the EBL Analog 
Computer. If 01100120 7 0, the origin is a node and only one of the lines 
of zero damping falls in the first quadrant. Since the intercept of this 
line has to be a saddle point, the amplitude plane is that shown in Fig. 2. 
This figure shows a characteristic property of non-linear equations, 
namely a dependence of the form of the solution on initial conditions. If 

2 the origin is a stable node, the motion is down toward the K1 - axis and, 
hence, for certain initial conditions, the motion goes to zero while for 

2 others it goes to large values of K1 , 

If 01100120 ~0, the origin is a saddle and either both lines go 
** through the first quadrant or neither doe~;:- ·.:When both lines go through 

the first quadrant but do not intersect there (Fig. 3a), our criteria 
reveal that the singularity on the line closer to the origin is a node 
while the other singularity is a saddle point. Thus, for a stable node, 
the yawing motion can approach a limit cycle of circular yawing motion 

2 or diverge to large values of K1 • This limit motion is a second 
property of non-linear equations • 

* 

** 

• 

Although Fig, 1 was drawn for the linear equation, the amplitude planes 
for non-linear equations whose only singularity is located at the origin 
are quite similar- to those shown. 

If neither line goes through the first quadrant, the amplitude plane is 
similar to that shown in Fig. lb. 
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If the zero damping lines intersect in the first quadrant and a10+a20 f O, 

the intersection must be either a node or a spiral. For this case the three 

singularities on the axes are saddles as shown in Fig. (3b). When the 

intersection is a node, it lies close to either axis and so this case is 

not shown. The limit cycle predicted for a stable node or spiral is now 

a limit epicycle. In other words, for a wide range of initial conditions 

the motion should eventually be epicyclic with certain fixed values of 

amplitudes and no damping. Because of symmetry considerations, $pecspecial 

case of a 10+ a20 =-O:_has to be a center and this is shown in Fig. 4. 

6. COMPARISON WITH NUMERICAL INTEGRATIONS 

After developing the technique for treating non-linear fourth order 

systems of a certain type, it is natural to wonder how well it would 

predict actual motion. Fortunately,the exact fourth order equations of 

motion for a missile acted on by non-linear forces and moments have 

already been programmed for the NORC computer at the Naval Proving Ground. 

In Reference {3 there are described a number of calculations which were 

made to investigate the effect of initial conditions on the character of 

the yawing motion. Since these calculations involved rather large 

yarying yaw of repose and a non-constant v, the comparison of theory 

with these calculations will be deferred to the appendix. 

Dr. Cohen and Mr. Hubbard of NPG offered to make a number of special 

runs_,as a crillttbcal test of the equivalent' linearization theory7. It was 

felt that the prediction of limit epicycles was an essentially new 

prediction and that this prediction should be checked. Two cases of 

ten NORC runs each were considered. For both cases the Magnus moment 

was assumed to be a quintic function of o and all other forces and 

moments were assumed to be linear. 
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4 In Reference 6 it is shown that the effective values of 5 are 

[5.~'el "' Kl 4 + 6Kl2K2 2 + ~K, 4 

[5~e2 = K, 4 + 6Kl2K22 + ~Kl4' 

-vTlf 

~·_::1", 
l ~~'2 

Thus the loci of zero damping are now hyperbolas. 

f8l) 

( 82) 

(8~) 

(84) 

The two sets of aerodynamic coefficients and spin were selected so 
that the left branches of the zero damping hyperbolas fell in about the 
same location as the zero damping lines in Figures ~a and ~b. The other 
branches were far enough to the right that they could be neglected for 
small yaw conditions. The exact conditions of these two cases are 
given in Table land the location and type of their amplitude plane 
singularities are given in Table 2. (Although the large yaw singu
larities are listed in Table 2, these points are not important in this 
discussion. ) 

The initial conditions for Case l were selected to lie to the left 
of the dashed curve in Figure ~a. It was, therefore, expected that the 
motion would quickly become a pure precessional mode with amplitude .• 0818. 
In Table ~,initial values of K. 2 

are tabulated with their values* after 
J 

18,000 calibers of travel. From Table ~' we see that the final values are 
close to the predicted point. In Figure 5, the final values at 18,000 
calibers are plotted on a greatly enlarged scale to show how the motion 
is slowly approaching the pure mode. 

The amplitude of the modes may be easily calculated from pairs of 
successive stationary values of 5. (5max = K1 + K,' 5min = !K1 - K2 I ). 
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Kl 

0 

.119 

0 -
.381 

0 

.257 

0 

.115 

0 

.0268 

.382 

0 

.250 

~ = .0055 

103H = .400 

~ --
0 

0 

.0818 

0 

·390 
.162 

0 

0 

.088 

• 0'784 

0 

~389 

.169 

TABLE 1 

Parametric Values for NORC Runs 

Both Cases 

Case 1 

- 4.16 

448 calibers 

TABLE 2 

3 10 T0 = - 1.30 

103 T2 = 156 

103 T4 = - 985 

Case 2 

- 2.08 

590 calibers 

Location and Type of Singular Points 

Case 1 

K 2 
1 

0 

.0141 

0 -
.1449 

0 

.0660 

0 

.0132 

0 

.000'72 

.1458 

0 

.06~5 

0 

0 

.006686 

0 

.1523 

.0261 

Case 2 

33 

0 

0 

.0075 

.00615 

0 

.1514 

.0286 

saddle 

saddle 

stable node 

saddle 

saddle 

stable spiral 

saddle 

saddle 

saddle 

stable spiral 

saddle 

saddle 

stable spiral 



TABLE 3 . . . . ··-
NORC Results for Case 1 

Initial Final 

Runs 102K1~ 10~ 2 
2 10~ 2 

1 702~2 

1 .0392 .5083 .0069 .6512 
2 .0400 .• 5069 .0046 .6561 
3 .4096 .1823 .0031 .6577 
4 .0655 1.2343 .0079 .6464 
5 .0610 ·5520 .005!3 .6529 
6 .0132 .4761 .0021 .6577 
7 .0004 .4900 .0002 .6642 
8 .2601 .1109 .0015 .6610 
9 .0071 1.2144 .0061 .6529 

10 .0036 ·5256 .0010 .6626 

From Table 2 we see that the small yaw limit cycle for Case 2 is a 
zero-damped epicycle with amplitudes K1 = .0268, ~ = .0784. Five pairs 
of initie.J. conditions were used. Although both members of a pair had the 
same initial modal amplitudes, the first member was initially at the 
maximum yaw while the second was at minimum yaw. The equivalent linear 
theory makes no distinction between these initial conditions and the 
NORC computations seemed to verify this characteristic. The actual initial 
amplitudes are given in Table 4. 

TABLE 4 -- ·-. 

Initial Squared Amplitudes for Case 2 

~~ll Kl K2 102K 2 
1 

102~2 

11, 16 .0268 .0784 .072 .615 
12, 17 .0141 .0784 .020 .615 
13, 18 .0700 .0500 .490 .250 
14, 19 .0100 .1380 .010 1.904 
15, 20 .0194 .0825 .038 .681 
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Once again computer runs of 18,000 caliber duration {30-1/2 maxiinac:Of 

yaw) were made. In all cases the motion became an epicycle with zero 

damping and the amplitudes of both modes agreed with the theory to four 

decimal places. Since runs 11, 12; 15, 16, 17, and 20 had initial ampli

tudes near the limit amplitudes, they attained their limit values rather 

rapidly,i.e., in less than 5,000 calibers. The remaining runs required 

the full distance of 18,000 calibers. 

In Figure 6, the complete amplitude plane for Case 2 is presented. 

The small yaw position together with the initial points for runs (13, 18) 

and (14, 19) are shown in Figure 7. The time history of the amplitudes 

for runs 13 or 18 were calculated from Eqs. (49 - 50) by the Exterior 

Ballistics Analog Computer. The values of the two modal amplitudes between 

successive maxima and minima were computed from the exact NORC calculations 

for Run 13 and are compared with the analog computer results in Figure 8. 

The agreement is quite good. 

As a final check of the theory it was decided to verify the predicted 

location of the separ.atrlx for Case 2. (This is the dashed curve in Fig. 7 

which separates the large yaw trajectories from the small yaw trajectories.) 
2 2 

For a value of K2 , values of K1 
were chosen which bracketed the predicted 

2 2 
K1 of the separa trix. This was done for two values of K2 • Jllli:thaugl'r.::the 

theory predicts that the results are independent of relative phase of the 

modes, runsc were made for modes both initially in phase and initially out 
2 

of phase. The values of Ki which were selected are given in Table 5. 

Exact six degree of freedom calculations were then made on the NORC 

for these initial conditions. The results for 3000-caliber long tra

jectories fell into two groups. For one group the yawing motion decreased 

while for the other it grew. For one run it was not possible, on the 

basis of the first 3000 calibers, to decide to which group it belonged. 

These three possibilities are denoted by S (stable), U(unstable), and 

N (neutral) in Table 5. As can be seen fr0111 that table, the agreement 

with the theory is excellent. 
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TABLE 5 

Trajectories to Locate Separatrix 

K 2 K'2 In Out of 
2 I Phase Phase~. 

.006 .oo8oo s s 

.006 .00825 s s 

.006 .00850 s s 

.006 .OO~f:~ s s 

.006 .00900 N u 

.006 .00925 u u 

2 Predicted K
1 

: .00895 

.012 .00450 s s 

.012 .00475 s s 

.012 .00500 s s 

.012 .00525 s s 

.012 .00550 s u 

.012 .00575 u u 

.012 .00600 u u 
2 Predicted K

1 
: .00555 
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7. SUMMARY 

1. A subset of the set of fourth order linear systems with constant 

coefficients has been identified and its important prop~rty of an epicyclic 

solution described. 

2. An approximate solution has been obtained for a class of non

linear equations which can be linearized to members of this subset. 

3. This solution was applied to the equations of yawing motion of a 

symmetric missile and the very useful concept of an amplitude plane intra -

duced. 

4. The predictions of the approximate theory have been compared with 

exact results and excellent agreement has been obtained. 
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APPENDIX A: DISCUSSION OF THE INHOMOGEm:OUS EQUATION 

Tn this appendix the stability c'haracteristics of the inhomogeneous 
equation will be considered. 

12 asymmetry has a form similar 

Since for constant spin a small aerodynamic 
to the gravity term in Eq. (41), the treat-

ment will be general enough to cover both cases. More precisely, we will 
consider the following differential equation.* 

A." + (H+J - iv)A.' - (M + iv T)A. = J).. ei\jr g € 

i(vp + w
0

) 
where J)..€ ei\jr is either G or J€)..€ e 

G ~ v (gg) cos 8 
u 

pd3 

tv 
A 

!), - k2~2 ~J J =- (1 - -) € m B € € 

!),€ 
is the asymmetric force coefficient 

~€ is the asymmetric moment coefficient 

)..€ is asymmetry angle 

*o is initial orientation of the asymmetric 

9 is the inclination of the trajectory 

(Al) 

force 

A is axial moment of inertia and B is transverse moment of inertia 

The particular solution for the linearized form of Eq. (Al) ~ith a constant 
. . . i¢3 *' ha~ t:he form K3 e 
yaw of repose case 1jr' = 

where ¢
3

• = 1jr' and K
3 

is a real 
0; for aerodynamic asymmetry 1jr 1 

constant. 

= v.) 

(For the 

* £• The small terms 1: ).. 1 and £JL'A. have been omitted for simplicity. 



2 If H, M, T, and J are assumed to be functions of 5 and the pure mode 

steady state solution is sought, the problem can be quickly solved. For 

this case, 
i~ 

A- K e 3 
- 3 

52 - K 2 - 3 

where ~3 = ~30 + ~· p. 

Substituting Eqs. (A2 - A3) in Eq. (Al), 

~· (~· ·:; v 

For the inhomogeneous Sravity term, Eq. (A4) reduces to 

·- V (g~) COB 6 
u 

= -----;2r-------,2' 
M(5R ) + iv T(5R ) 

(A2) 

(A3) 

(A4) 

(A5) 

where ~ is the yaw of repose, 5R = K
3

, ~R = ~30 • On the other hand, for the 

small asymmetry term it becomes 

= 2 A 2 r£~- 2 v (1 - B)+ M(K3 ) + iv ~ T(K3 ) -
(A6) 

An important difference between Eqs. (A5 - A6) and their linearized 

versions is the fact that more than one solution of the non-linear 

expressions is possible. In usual practice it is difficult to construct 

an important example of a lllllltivalued yaw of repose. For missiles 

possessing small aerodynamic asymmetries, a lllllltivalued trim angle is 

quite possible. As is shown in Figure 9, which is based on Eq. (A6) 

for a common non-linear static moment curve, the well known linear 
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resonance curve is quite distorted and for certain spins three values of 
K

3 
are possible.* This non-linear response curve possesses cthe,~C.har.ai:teristd.c 

non-linear property of jumps between roots where the curve possesses a 
vertical tangent. 

In order to treat the more general case of mixed oscillations, we will 
make use of the direct substitution method of Referenc~ 6. If Eq. {Al) is 
written for cubic non-linearities in M, T, and J, 

t.." + (H+Jg-iv)t..' - ~0 + ~ F} + iv (T0 + T2 

+ K3Kl 

i~ 
+ K e 3 

3 

c i{~3-~l) i{~l-~3j 
e + e 

-a P 
where Kj = e j l 

~jO + ~j'PJ 
j = 1, 2 

~j 

K3 = constant and 

' ~3 = ¢30 ., \jl p. 

* 

(A7) 

{A8) 

(A9) 

It is quite likely that the middle value of K is unstable. This is the 
cas~ for the single degree of freedom case. (see.Refs. 11 and 13.) 
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If Eqs. (AB - A9) are substituted in Eq. (A7) and terms of the same 

frequency are collected, 

i~l 
K1 e 

- (~ + iv T2 ) [o,e2 

. ;•, { t •·' . it' 
- (~ + iv T2 ) [a2lJ 
- E = 0 

where 1.2J 2 2 2 
L6 el = Ki + 2K2 + 2K3 ' 

1:21 2 2 2 
L6 J e3 = K3 + 2Kl + ~ ' 

[o~e31 =~2_}e32 = K3~E' 

[o~e33 = Kl2 + ~2 + K32' and 

(A10) 

41 



E =[~ r- 2 i(2¢2-¢1) 2 i( 2¢1-¢2) 
~1K2 e + K1 K2 e 

2 i( 2¢3-¢2) 2 i( 2¢2-¢3) 
+ K~3 e + K2 K

3 
e 

If certain isolated sets of frequencies are avoided*, the error term in 
Eq. (AlO) will contain frequencies which are different from any of the 
"primary" frequencies ¢J 1 • Making our usual assumption that the solution 
to the non~linear equation has the same form as the solution to the 
linearized equation, we neglect the error term E in Eq. (AlO) and replace 
the local amplitudes, Kj' in the coefficients of cubic terms by their 
average values. 

* 

t 1 ('+'·'-v) 

The cases which are 
for which ¢ 1 = ¢ 1 

1 2 

(All) 

(j = 1,2). 

(Al2) 

to be avoided include stability factor equal to one 
and resonance for which either ¢

3
• = ¢1 • or ¢

3
• = ¢2 •. 

42 



Eqs. (All - Al2) may be extended to handle more general non-linearities by 

the us~Kof higher order polynomials in §
2

• In Table 6,values of[o2~el 
and [o ~e31 , which were calculated by an algorithm similar to that used 

in Ref. 6, are tabulated fork= 1, 2, 3. Lo2~e2 ' [o
2
k]e3' and [o

2k] e32 

can be obtained f~om [o2~el and ~2~e3l by replacing 1 by 2 or 3 in the 

subscripts while [o2~ e33 is the symmetric part* of ~2~el" 
An important feature of this three frequency problem can be seen 

from Eq. (A9). According to this equation the non-linearities are 

functions of three difference frequencies. These difference frequencies 

are linearly dependent, and, therefore, this treatment is essentially an 

average over two frequencies and suffers from the hazy physical meaning of 

such a process. 

As an application of Eqs. (All - Al2) we will consider the empli tude 

plane for a quintic Magnus moment as modified by a constant yaw of repose. 

If Eqs. (All) are modified for a quintic Magnus moment, it follows from 

their imaginary parts that 

aj = aJO + aj2 (o2}ej + aj4 (e.4}~J (Al3) 

where 

* This symmetric part is identified by braces in Table 6. 
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TABLE 6 

f121 [, 2 2 2} 2 2 2 2 2 L5 Jfl =r_Kl + K2 + K3 + (K2 + K3 ) = Kl + 2(K2 + K3 ) 

r-14l { 2 2 2 
2 

2 2 2 ~ 2 21 2 2 2 2 2 2 2 L' _jel = (Kl +IS + K3 ) + 2 (Kl IS +IS 1(3" + ~](:LJ + 2 (~ce + K2c + s-),{~ + ~) + ~K2 IS 

2 2 2 2 2 2 22 22 22 = (Kl + K2 + K3 ){Kl + 3K2 + 3K3 ) + 2{Kl IS + 3IS K3 + K3 Klc:) 

1 6 2 2 2 3 2 . 2 2 2 g 2 2 2 2 2 ~~el = tKl + IS + K3 ) + 6 (Kl + IS + K3 )(Kl ~ +IS ~3~ + K3 Kl ) + l2Kl IS K3 

2 2 2 2 
2 2 2 2 2 22 2 2 2 2 + 3(Kl + IS + K3 ) (IS + K3 ) + l8(Kl + IS + K3 )IS K3 + 3(IS + K3 ) Kl 

[5~e3l = K3A.E 

[ 
~ 2 2 2 

5 Je3l = 2K3A.E (Kl + ~ + K3 ) 

~6l3l = 3K3A.E 
It 2 2 2 2 2 2 
LKl + IS + K3 )(Kl + 3IS + K3 ) 

2 2 2 2 21 
+ 2IS {Kl + K3 ) + Kl K3 J 



In most cases the effect of T on BR is small. From Eq. (A5), 

B ; 
R 

(Al4) 

Eqs. (Al3 - Al4) can now be used to interpret the results of Ref. 8. 

The aerodynamic coefficients which were used in that reference are listed in 

Table 1'7-. Although a number of spins were considered, we will limit our 

attention to v = .0055. The quintic expansion of the Magnus moment was 

good up to 14° and so only the small yaw singularities are listed.* 

* 

103H 

105M 
0 

105~ 

-v = 

TABLE 7 

Parameters Used in Reference 8 

= .g28 

= -4.10 

= -6 

. . . . . . . 
.0055 

= 643 calibers 

103T = - 2.83 
0 

103T = 2 
l03T = 4 . . . 
':1 ,,_~ I 
pl. 102 

313 

-1976 

. . . . . . 
= 452 calibers 

211 
= 1496 calibers 

Since the :lfraqwmtde.s are not important to this discussion, the indicated 
cubic natur~.of the static moment will not affect our results. 
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Small Yaw Singularities for 
Initial Yaw of Repose of .016 

Kl ~ 
K 2 

1 
K 2 

2 Type 
---

0 0 0 0 saddle 
:il20 0 .0144 0 saddle 

0 .082 0 .0067 stable node 

The actual variation of the yaw of repose as a function of p is given 
in Figure 10. Since the summit value of the yaw of repose is about five 
times its initial value of .016, its square magnitude grows to twenty-five 
times its initial value. In Figure ll the small yaw amplitude plane for a 
constant yaw of repose of .016 is shown. The corresponding amplitude plane 
for summit conditions, yaw of repose of .100, is given in Eig. 12. Thus it 
can be seen that the growth in oR has the effect of moving pure mode singu
larities towards the origin and past it. 

This variation in oR means that G in Eq. (Al) is a function* of p. If 
G and therefore oR changes slowly during an appropriate period of the motion, 
it is reasonable to expect that our technique will still apply. According 
to Table 7 the shortest period associated with any of the three difference 
frequencies i~ 452 calibers. From Figure 10 it can be seen that for the 
first thousand calibers the yaw of repose varies reasonably slowly in 
comparison with this period. Since the results of Ref. 8 indicate that the 
motion over this distance is sufficient to determine the character of the 
yawing motion, it seems reasonable to compare the predictions of the 
equivalent-linear theory with those of that reference. 

In the NORC calculations of that report, certain physical parameters 
were varied and a large number of trajectories were calculated for a 
variety of initial condi tiona. It was found that the computed yawing 
motion either became quite large or damped out. The critical initial 
conditions which separated these two types of yawing motion were determined. 

* Under the assumptions of Reference 8, v and J are also functiohs of p. 
Their variation, however, is overwhelmed by g the variation in oR. In 
any event the remarks made about oR will apply to these terms as well. 
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The initial modal amplitudes associated with six of these critical sets of 

initial conditions are listed in Table 8 and plotted in Figure 11. Accord

ing to the theory these points should fall near the separatrix associated 

with the nutational saddle. The qualitative description of this saddle 

point's motion to the left also explains why the point for Case 581 lies 

farther to the left of the separatrix than the other points. In all events, 

the agreement is quite good. 

TABlE 8 

NORC 
1<1 K2 K 2 K 2 

Run No. 1 2 --
Standard .103 .060 .0106 .0036 

Case 
446 .106 .054 .0113 .0029 

479 .103 .064 • IDlll07 .0041 

504 .101 .062 .0103 .0039 

531 .096 ·073 .0092 .0053 

581 .079 .105 .0062 .0111 

47 



APPENDIX B: CALCULATION OF THE AMPLITUDE 
PLANE FOR NON-POLYNOMIAL NON-LINEARITIES 

Although the results of this report have been stated in terms of general 
non-linearities, the applications have been for polynomial functions. These 
functions possess the handicap of groWing rapidly for large angles. Most 
nonrlinear moments either level off or tend to zero With increasing angle. 
Since constant moments imply moment coefficients which are proportional 

-1 to o , and moments tending to zero can be described by higher negative 
powers of o, effective values of negative powers of o are of some interest. 

The definitions of 
2rr 

[o,el = ~lt [
0 

the effective values of om are 

(Bl) 

(B2) 

2 2 2 where o = K
1 

+ JS + 2K
1
JS cos ~. If m is s negative even integer, the 

integrals may be computed in closed form by means of Pierce formulas 
Nos. 304-306. This has been done form = - 2, - 4, - 6, - 8, and the 
results for [oj el listed in Table 9. The results for [ om]e2 may be 
obtained by interchanging the subscripts land 2. 

The important case of @-J el' which arises from a constant moment, 
requires the use of elliptic integrals. After some algebraic manipulation 
we have the result: 

(B3) 

k2 = 4 KlK2 

(Kl + JS)2 (B4) 

where E1 is the complete elliptic integral of the first kind usually denoted 
by K and E2 ·is the complete elliptic integral of the second kind usually 
denoted by E. 
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~-21 
Jel 

1 
=~ 

1 

K 2 
1 

K 2 
- 2 

Kl4 + Kl2K22 - 2K2 4 

IK/ - K2215 

TABLE 9 

2 Since the inverse powers of 8 can not be used to describe aerodynamic 

moments for small angles, the actual moment curve vould have to be approxi

mated by at least tvo analytic segments. For example the Magnus moment 
.,_ ' could be represented by a cubic function of 8.for 0 = 8 = 8 , and a constant 

~ "- a 
for 8a = 8 = ~· The Magnus moment coefficient for this case would be 

dete~ined by the following conditions: 

(B5) 

(B6) 
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As a consequence of this two·segment approximation of the Magnus moment 
curve, three different types of yawing motion have to be considered: 

(1) o lying in the 
._2, effective values of , u ,· 

interval (o, oa) for which Eq. (B5) applies and the 
can be used to describe the motion; 

(2) o lying in the interval (oa' Dt) for which Eq. (B6) applies and 
' -1~ the effective values of o , are used; and 

(3) o lying in both intervals for which both equations apply and the 
motion ca~culated by means of Eqs. (51 - 52). 
The boundaries of the corresponding regions in the amplitude plane are 

(B7) 

These regions are shown in Figure 13. 

It should be noted that the amplitude plane for arbitrary non-linear 
moments can be computed by numerical means from Eqs. (44- 45). This 
integration would be ,.simpler than that of the complete fourth order non
linear equation and the resulting amplitude plane would display simple 
relationships between initial conditions and the type of yawing motion. 
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APPENDIX C: AN IMPROVED FIRST APPROXIMATION 

An important feature of the K·B equivalent linearization method which 

was developed in the report proper was the use of an epicycle with zero 

damping as the first approximation. This was defined by the equation 

where ~j = ~JO + ~j 'p 

"' ~ I = 
j 

~ /"'2"' 
- a2 .! V a2 + ~bl 

2 

(Cl) 

N 2 "V "" ~ a
2 

+ ~b1 > 0 and a
2 

and b
1 

are the values of a2 and b
1 

when A. and A.' 

are zero. 

This selection of a first approximation suffers from the handicap that it 

can not be near the actual motion for amplitudes which make the non-linear 

a2 and b1 very different from their linear values. In particular, if the 

small amplitude values of a2 and b1 should not satisfy the inequality 
~ 2 ,...., 
a2 + ~b1 "? o, small amplitude epicyclic motion would be impossible and 

the first approximation would not exist. Yet it is quite possible that 

for certain non-linearities large amplitude epicyclic motion could occur. 

For this reason we will consider, in this section, a better choice 

for the first approximation. From an examination of Eqs. (38) and (~0) it 

"' can be seen that these equations could be considerably simplified if a2 and 

"' b1 had been selected to be the average values of a2 and b1 • More precisely, 

they would be defined by the relations 

r,'· ., ,, (c2) 

(C3) 
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Under these definitions Eqs. (38) and (40) would reduce to 

1jr I 
2 - Kl ~01! ff( a2 - 8:'2 )~l' - (bl - b') cos ~ 2!!(~2 '-~l 1 

)K2 J , ~ J 

• 1•1 ~,' • o2 ) "• 1 " 

(C4) 

(C5) 

This use of an improved first approximation which is based on defi:.o"" 
nitions (C2) and (C3) would clearly overcome the problem of non-existent 
small amplitude epicyclic motion*. The remainder of the anaJysis would be 
identical with that of the text. The calculation of the amplitude planes 
would, however, be made more complicated by the need to consider the vari
ation of ¢ij• with amplitude. 

* This definition also possesses the advantage of yielding the exact 
frequency of constant amplitude pure mode motion. This can be seen from 
the fact that if damping is neglected, Eq. (25) is linear for pure mode 
motion and the linear frequency formula for the pure mode is correct. 
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APPENDIX D: .AMPLITUDE PLANES FOR MISSILES WITH 
NON-LINEAR DAMPING MOMENTS AND ZERO SPIN 

A rather interesting special case of non-linear damping mdfuent is that 

for zero spin. Since rl I = - '¥2 I' Eqs. (44 - 45) assume the simple form*: 

2ll 

Kl
1 

1 f 2 
Kl = - 'If,( 0 H( 5 ) 

(Dl) 

2 
If H is assumed to be represented by ~ power aeries in 5 , Eqs. (Dl - D2) 

become 

n 

.?; ~k 

n 
K I 

1 L: ~25!2 2 
Ha K

2 
=- 2 

k=O 

n 

where H = L: H2k 
52k 

R:=O 

21( 

~2~ - 1 =1- 21( fo 52k (1 - lS COB '¢) 
Kl 

d¢ 

21( 

~2~ = l_ Jo 
2k Kl 

5 (1 -;~ COB ¢) d¢ 
e2 21( 

* The small gravity term and small JL 1 term have been neglected for 
simplicity. 
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The definitions of [52~=j should hsve a simple relationship with the [52~~j 
listed in Table I of Reference 6. If the sign in fron' of the coefficient 
of the brackets which appear in that table is changed from plus to minus, 
this new effective yaw can be computed. For example 

From symmetry, 

Note. If H had been assumed to be a polynomial function of I A1 1
2 

an interesting simplification would follow. For ¢1 • =- lt2 •, Eq. 
becomes 

(D5) 

(D6) 

(D7) 

(DB) 

(34) 

(D9) 

(DlO) 

IS 
(l - ~ cos ¢) d¢. 

l 

Replacing¢ by¢ + n we, therefore, see that 

(Dll) 
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Returning 

the properties 

2 
·it,g.c the assumption that H is a function of o we now consider 

of amplitude planes associated with Eqs. (D3 - D4). Since 

these relations are symmetric in the two modes, we expect all amplitude 
2 2 

planes to be symmetric with respect to the line K1 = ~ • The first 

consequence of this symmetry lies in the fact that the origin must be a 

node. 

In order to consid€r other singularities on the axes we expand H in a 

Taylor expansion about the amplitude~. 

H = H(~) + H'(~) ~2 - ~] (Dl2) 

Oil = ~ {H(~) + H'(~) ~12 (Dl3) 

a2 = ~ {H(~) + H'(~) (Dl4) 

If the singularity is on the 
2 

one axis at( K , 0), a1 vanishes and from Eli;[. 

(Dl3)it can be seen that 

H(~) = 0. 

Shttting the origin to the singular point by the translation x 
•) 

:... K ;2 
- 1~ 

2 y = K2 , the differential equation for the amplitude plane becomes 

(D15) 

- ~~ 

(Dl6) 

The usual tests show that the singularity must be a saddle. Therefore,all 

pure mode singularities with the exception of the origin must be saddles. 

The case for a quadratic H is quite simple. The damping curves are 

given by Eqs. (Dl3- Dl4) for~.= 0, H0to H(O( and~ = H'(.O ). If 

H
0 
and~ have the same sign, the origin is the only singularity. (Fig. 

14a). If they are of unlike sign, three more singularities appear in the 

first quadrant. '1 The 
Ho 

two pure mode singularities at (- ~ , 0) and 

Ho 
(0, - ~)have 

· Ho Ha 
at(- H'- -) 

2 ~ 

to be saddles while it can be shown that the singularity 

is a node. (Fig. 14b). 
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For negative H0, this second node is a stable node and the limit motion 

is planar yawing motion with amplitude, K1 + K2 = 2 ~ For planar 

yawing motion, the yaw equation reduces to a real equation in the magnitude 
of yaw, B. 

2 o!' + ( H0 + ~ 5 )5 1 - M 5 = 0, M I.. 0 (Dl7) 

Eq. (Dl7) is the well-known van der Pol Equation and our predicted amplitude 
agrees with the amplitude obtained by other methods.* 

If a quartic H is considered, singularities can appear off the axes in 
three different ways. In Table 10 the off-axis-singularities for these 
three cases are listed and the amplitude planes for cases B and C are given 
in Figs. 15 and 16. (Since the amplitude plane for case M is essentially 
a distortion of Fig. 14b, it is not shown). The limit motion for case C 
is particularly interesting. It is an ellipse with semi-major axis r4, + r 3 and semi-minor axis r4 - r:; . 

* The interesting character of the amplitude plane for no spin, quadratic 
H, and H0~ Z 0 was pointed out to the author by H. 1. Reed. 
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TABLE 10 

OFF-AXIS SINGULARITIES FOR H = H0 + ~ 'i} 

Case A 

H _o ..(o 
H4 

2 2 
{r2 , r 2 ) node 

Case B 

2 
(r1 ' 

2 
r1 ) node 

2 
{r2 ' 

2 
r2 ) node 

Cail$ C 

2 

t~r 1 Rl < 
Ho 1 ~ 

'8 H4 
~ lj: -< 

H4 

2 
{r3 ' 

2 
r4 ) center* 

2 2 
{r4 , r

3 
) center* 

.- •,'.- i [:fl· J~} -8 [~} 
r22 = -lj: ~ -/[~] - {~1} 
·,'-- ~t: /al~- Ii.J J 
··'-- ~{ ~ /sl:j- ~ J 

0 

*According to the criteria of Ref. 14, this point is a center if the cubic 
terms which appear in the numerator and denominator do not affect the 
character of the singularity. Fig. 16 is based on this assumption. 
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AMPLITUDE PLANE FOR CUBIC MAGNUS MOMENT (a,0 a10 >0) 
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AMPLITUDE PLANE FOR CUBIC MAGNUS MOMENT (a10 • -a10 ) 
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PORTION OF AMPLITUDE PLANE FOR CASE I 
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SUMMITAL AMPLITUDE PLANE 
(REF.8) 
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